Tag Archives: Extended Boolean

Using Extended Boolean to Achieve Semantic Search in Sourcing

When it comes to sourcing and recruiting, semantic search is perhaps the most powerful way to quickly find people who have experience you’re looking for.

Now, I am not talking about black box semantic search (e.g., Google, Monster’s 6Sense, etc.).

I’m referring to user-defined semantic search, where you tell a search engine exactly what you want with your query, and the search engine doesn’t try to “understand” your search terms or “figure out” what you mean through taxonomiesRDFa, keyword to concept mapping, graph patterns, entity extraction, fuzzy logic, etc.

If you’re not very familiar with semantic search (for sourcing – not search engines), I strongly suggest you read my comprehensive article from January 2012 on the subject: The Guide to Semantic Search for Sourcing and Recruiting. Continue reading

Monster’s Undocumented Boolean Search Operators & Query Compression

 

Monster logo smallThe other week I came across a question regarding Monster’s search operators in the Boolean Strings group on LinkedIn and I realized that most people don’t know that Monster’s classic resume search has a few undocumented search operators as well as powerful semantic search capability.

In this article I will detail two of Monster’s undocumented search operators, how to compress your Boolean search strings by more than 30%, and remind you of Monster’s documented but seldom used NEAR search operator.

AND = & + OR = |

Although I can’t seem to find any documentation of it, Monster’s search functionality does support the & for the Boolean AND search operator as well as | for OR Boolean search operator – which can save on character space for longer queries.

While most people don’t run searches that will test Monster’s main search field limit of 500 total characters (including spaces), there are those sourcers and recruiters who extensively leverage conceptual search, employing comprehensive OR statements for each concept in their Boolean search string, which can easily exceed 500 characters, especially when searching for a number of target companies.

In cases such as these, it can be helpful to use the ampersand (&) for AND and the pipe symbol (|) for OR, effectively cutting the number of characters used for AND’s and OR’s by 60% (5 total characters down to 2).

For example, compare these two searches which return the exact same results:

  • iOS AND (ObjectiveC OR “Objective-C”) AND (cocoa OR xcode) AND (iPhone* OR iPad*) AND (“apple store” OR iTunes OR “app store”) AND (SQL* OR xib)
  • iOS & (ObjectiveC | “Objective-C”) & (cocoa | xcode) & (iPhone* | iPad*) & (“apple store” | iTunes | “app store”) & (SQL* | xib)

Even with a relatively short Boolean search string of 144 characters, you can save over 10% by using & and | (128 vs. 144 characters).

If you wanted to compress your queries further, you can actually eliminate all spaces in your Boolean search string with no negative effects.

For example – this Boolean search string returns the exact same results as the above two searches:

  • iOS&(ObjectiveC|”Objective-C”)&(cocoa|xcode)&(iPhone*|iPad*)&(“apple store”|iTunes|”app store”)&(SQL*|xib)

Sadly, Monster does not support the minus sign (-) for the NOT operator.

However, you do not have to type AND NOT, nor & NOT – a simple NOT will do.

In fact, you don’t even have to capitalize NOT or any other Boolean search operator, for that matter – lowercase not works exactly the same.

Thanks Monster!

Boolean Search: Who Needs AND Anyway?

Interestingly, most people also don’t know that you don’t have to type AND or & – similar to LinkedIn, Google, Bing, etc., any space can be an implied AND.

For example, this search runs exactly as the ones above:

  • iOS (ObjectiveC|”Objective-C”) (cocoa|xcode) (iPhone*|iPad*) (“apple store”|iTunes|”app store”) (SQL*|xib)

Furthermore, you don’t even have to use a space to leverage implied AND functionality – this search returns the exact same results:

  • iOS(ObjectiveC|”Objective-C”)(cocoa|xcode)(iPhone*|iPad*)(“apple store”|iTunes|”app store”)(SQL*|xib)

Now we’re down to 101 characters, which is nearly 30% more efficient than our original 144 character search.

How’s that for Boolean search efficiency?

If you’re wondering how I figured this stuff out, it’s actually quite simple – curiosity and experimentation.

I challenge you to be curious and to experiment – from time to time, simply ask, “I wonder what would happen if…..?” and give something a try.

Hopefully all of what I’ve shared with you today has made you curious about your other sources and how you might be able to experiment and tweak your searches for other sites to make discoveries and yield additional benefits.

If you you do – please let me know!

Monster’s NEAR Operator: Documented but Seldom Used

Although Monster’s extended Boolean NEAR search operator is documented, most people don’t use it. This is unfortunate, because proximity search is incredibly powerful and can help you zero-in on people based on what they’ve actually done vs. resumes containing search keywords.

Monster’s NEAR operator is an example of fixed proximity search, which can be used to return results with words, phrases or OR statements within 10 words of other words/phrases, or OR statements, which can enable semantic search at the sentence level.

Would you be interested in learning more about sentence level semantic search using the NEAR operator?

 

The Guide to Semantic Search for Sourcing and Recruiting

If you have nearly any tenure in HR, sourcing or recruiting, you’ve probably heard something about “semantic search” and perhaps you would like to learn more.

Well – you’ve found the right article.

As a follow-up to my recent Slideshare on AI sourcing and matching, I am going to provide an overview of semantic search, the claims that semantic search vendors often make, explain how semantic search applications actually work, and expose some practical limitations of semantic search  recruiting solutions.

Additionally, I will classify the 5 basic levels of semantic search and give you examples of how you can conduct Level 3 Semantic Search (Grammatical/Natural) with Monster, Bing, and any search engine that allows for fixed or configurable proximity.

But first – let’s define “semantic search.” Continue reading

Talent Sourcing: Man vs. AI/Black Box Semantic Search

Back in March 2010, I had the distinct honor of delivering the keynote presentation at SourceCon on the topic of resume search and match solutions claiming to use artificial intelligence in comparison with people using their natural intelligence for talent discovery and identification.

Now that nearly 2 years has passed, and given that in that time I’ve had even more hands-on experience with a number of the top AI/semantic search applications available (I won’t be naming names, sorry), I decided it was time to revisit the topic which I am very passionate about.

If you’ve ever been curious about semantic search applications that “do the work for you” when it comes to finding potential candidates, you’re in the right place, because I’ve updated the slide deck and published it to Slideshare. Here’s what you’ll find in the 86 slide presentation:

  • A deep dive into the deceptively simple challenge of sourcing talent via human capital data (resumes, social network profiles, etc.)
  • How resume and LinkedIn profile sourcing and matching solutions claiming to use artificial intelligence, semantic search, and NLP actually work and achieve their claims
  • The pros, cons, and limitations of automated/black box matching solutions
  • An insightful (and funny!) video of Dr. Michio Kaku and his thoughts on the limitations of artificial intelligence
  • Examples of what sourcers and recruiters can do that even the most advanced automated search and match algorithms can’t do
  • The concept of Human Capital Data Information Retrieval and Analysis (HCDIR & A)
  • Boolean and extended Boolean
  • Semantic search
  • Dynamic inference
  • Dark Matter resumes and social network profiles
  • What I believe to be the ideal resume search and matching solution
Enjoy, and let me know your thoughts.

What is a Boolean Black Belt Anyway?

I’ve been blogging nearly 3 years now, and I realized I’ve never come out and actually defined the term “Boolean Black Belt.”

The concept seems pretty self explanatory, but there has been at least 1 person who’s taken the opportunity to point out (and gain some traffic in the process – but it’s all good!) that it could be perceived as a bit of an oxymoron to be an “expert” in something as simple as 3 Boolean operators.

Interestingly, however, I’ve found that most sourcers and recruiters don’t even fully exploit the various powers of the OR and NOT operators – not even close.

So what is a “Boolean Black Belt” anyway? Continue reading

Beyond Boolean Search: Proximity and Weighting

Beyond Basic Boolean

Most sourcing, recruiting, and staffing professionals are familiar with the basic Boolean operators of AND, OR, and NOT. However, I have found that few are familiar with what some refer to as “extended” Boolean functionality, such as proximity search and term weighting.

Proximity and term weighting, where supported, are not actually logical (Boolean) operators – they are more accurately referred to as text or content operators.

Whatever you call them – extended Boolean or text operators – they offer sourcers and recruiters significantly more control, power and precision when executing searches, and in the hands of an expert, they can enable semantic search. Continue reading

LinkedIn Search: What it COULD and SHOULD be

Did you know that LinkedIn currently has the ability to deliver incredibly powerful search functionality to its users – WELL beyond what we all have access to now?  What am I talking about?

I’m excited to tell you, but quite honestly, I actually can’t believe it’s taken me this long to put 2 and 2 together. Have you ever really watched the video clip below that you can find on  LinkedIn’s Learning Center as well as on YouTube?

If you ignore the information regarding the new features and pay close attention to the video, you can hear Esteban talk about how LinkedIn is always on the lookout for talented Lucene Open Source engineers and watch him search for them. Lucene is an open source text search engine that I’ve written about in multiple posts for its advanced search functionality, including extended Boolean.

LinkedIn uses Lucene as their Text Search Engine

When I first watched the video, I never gave the Lucene stuff a second thought because LinkedIn doesn’t actually offer any of Lucene’s truly advanced search functionality – LinkedIn doesn’t even support root-word/wildcard searching, let alone extended Boolean search. I figured if they were already using Lucene for their text search engine they would offer all of Lucene’s search functionality, which they don’t.

Then I watched the video again the other day (not exactly sure why) and I it made me curious. Had they already implemented Lucene, or were they looking to do so? I did some research to see if I could confirm a link between LinkedIn with Lucene (pun intended).  Although TechCrunch reported that LinkedIn upgraded its people search, they failed to mention the technology behind the upgrade. I was then able to dig up an article that verified that LinkedIn had implemented Lucene as their text search engine.

So What Can LinkedIn Do With Lucene?

I’m glad you asked – be prepared to be amazed!  Continue reading